메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
주성수 (한양대학교) 박훈기 (한양대학교병원) 김인영 (한양대학교) 이종실 (한양대학교)
저널정보
한국재활복지공학회 재활복지공학회논문지 재활복지공학회논문지 제11권 제4호
발행연도
2017.11
수록면
371 - 376 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 원형 근전도 시스템 장비를 사용하여 근전도 패턴인식을 할 때, 장비의 센서 위치와 무관하게 패턴 인식이 가능한 알고리즘을 제안한다. 6가지 동작의 8채널 근전도 신호를 1초간 측정한 데이터를 이용하여 14개의 특징점을 추출하였다. 또한 8개의 채널에서 추출된 112개의 특징점을 나열하여 주성분분석을 하고 영향력이 높은 데이터만을 추려내어 8개의 입력 신호로 줄였다. 모든 실험은 k-NN 분류기를 이용하여 데이터를 학습시키고 5-fold 교차 검증을 사용하여 데이터를 검증하였다. 기계학습에서 데이터를 학습시킬 때, 어떤 데이터를 학습하느냐에 따라 그 결과가 크게 달라진다. 기존의 연구들에서 사용하는 학습 데이터를 사용 할 경우 99.3%의 정확도를 확인하였다. 그러나 센서의 위치가 22.5도 정도만 틀어지더라도 67.28%의 정확도로 명확하게 떨어짐을 보았다. 본 논문에서 제안하는 학습 방법을 사용 할 경우 98%의 정확도를 보이고 장비의 센서의 위치가 바뀌더라도 98% 근처의 정확도를 유지함을 보였다. 이러한 결과를 사용하여 원형 근전도 시스템을 사용하는 사용자들의 편의성을 크게 증대시켜 줄 수 있을 것으로 보인다.

목차

요약
ABSTRACT
1. 서론
2. 원형 근전도 제스쳐 인식 알고리즘
3. 실험 결과
4. 결론 및 고찰
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0