메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyoung-Bae Eum (군산대학교) Dong-Kyu Beom (군산대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제18권 제8호
발행연도
2017.12
수록면
1,517 - 1,522 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
단일 영상 기반 초해상도(SR) 기법 중 TV 기반 초해상도 기법은 에지 보존과 artifact가 없다는 점에서 성공적인 방법으로 평가되어 왔으나, 텍스쳐 성분에서는 개선을 보이지 못했다. 본 논문에서는 이와 같은 문제점을 개선하기 위해서 새로운 TV-G 분해 기반 초해상도 기법을 제안하였다. 제안된 초해상도 방법에서는 에지와 같은 구조적 성분의 해상도를 보다 더 개선하기 위해 SVR 기반 up-sampling 방법을 제안하였다. 또한, Neighbor Embedding(NE)을 개선하기 위해 완화된 제약조건을 이용한 Non-negative Embedding(NNE) 방법에 기반한 학습 방법을 이용하여 텍스쳐 성분의 해상도를 개선하였다. 실험을 통하여 본 논문에서 제안된 방법이 기존의 보간법, ScSR, 기존의 TV 및 NNE 기법들에 비해 정량적인 척도 및 시각적으로도 향상된 좋은 결과들을 보였다.

목차

[요약]
[Abstract]
Ⅰ. Introduction
Ⅱ. TV-G Decomposition based Super Resolution
Ⅲ. Experimental Results
Ⅳ. Conclusion
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001674423