메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ki-suk Jun (Hannam University) Yong-hun Lee (Chungnam National University)
저널정보
한국응용언어학회 응용언어학 응용언어학 제33권 제4호
발행연도
2017.12
수록면
79 - 102 (24page)
DOI
10.17154/kjal.2017.12.33.4.79

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The objective of this study was to investigate distributional properties of four modal auxiliaries (can, could, may, and might) in three varieties of Inner-Circle Englishes (British English, American English, and Canadian English) and provide a statistical analysis of their distribution. For this purpose, we used three comparable corpora in the analysis: the British Component of International Corpus of English (ICE-GB), the USA Component (ICE-USA), and the Canadian Component (ICE-Canada). After extracting all sentences with the four modal auxiliaries, we encoded seventeen factors into each of them. We then applied a multinomial logistic regression model and statistically analyzed which factors played a role in deciding on the choice of modals and how they affected the choice in different varieties of Inner Circle Englishes. We also adopted a Behavioral Profiles analysis to examine whether Canadian English was closer to British English or American English. Through these analyses, we identified the following facts: (i) ten linguistic factors were involved in the choice of modal auxiliaries, (ii) two factors were different depending on the variety of Inner-circle English, and (iii) Canadian English was closer to American English than British English in the uses of the four modal auxiliaries.

목차

Ⅰ. INTRODUCTION
Ⅱ. LIREATURE REVIEW
Ⅲ. RESEARCH METHOD
Ⅳ. LOGISTIC REGRESSION
Ⅴ. THE BP ANALYSIS: RESEARCH QUESTION 3
Ⅵ. DISCUSSION
Ⅶ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-701-001682796