메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ishara Sandun (University of Moratuwa) Sagara Sumathipala (University of Moratuwa) Gamage Upeksha Ganegoda (University of Moratuwa)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.17 No.4
발행연도
2017.12
수록면
307 - 314 (8page)
DOI
10.5391/IJFIS.2017.17.4.307

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In last decade information technology has gained a rapid development, and today it plays a crucial role in everyone’s life. It makes the life more comfortable for professional to do their work. Every performance and the innovating task will become more comfortable if there is a proper and accurate knowledge base containing up to date information. It will be an added advantage if the so-called knowledge base could shrink and expand dynamically. Especially in the medical domain, there is a higher demand and necessity for such kind of knowledge base which evolves dynamically with time and data because medical field is rapidly evolving and new biomedical entities such as diseases, symptoms, proteins, and so forth are frequently introducing. This study proposes a mechanism to generate dynamically evolving ontology for the biomedical domain which evolves with new relations explores from web data and patient history records. Proposed approach retrieves information from the ontology and generates probabilistic values for each relationship in the disease ontology. This approach used to create a dynamically evolving ontology for the medical domain to manage the relationship between diseases and symptoms more effectively. Furthermore, it retrieves data from the ontology to answer user queries related to the diseases and symptoms.

목차

Abstract
1. Introduction
2. Related Work
3. Proposed Solution
4. Results and Evaluation
5. Discussion
6. Conclusion
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001712763