메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hussein A. A. Al-Khamees (Babylon University) Nabeel Al-A’araji (Babylon University) Eman S. Al-Shamery (Babylon University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.22 No.3
발행연도
2022.9
수록면
267 - 275 (9page)
DOI
10.5391/IJFIS.2022.22.3.267

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Data streams are a modern type of data that differ from traditional data in various characteristics: their indefinite size, high access, and concept drift due to their origin in non-stationary environments. Data stream clustering aims to split these data samples into significant clusters, depending on their similarity. The main drawback of data stream clustering algorithms is the large number of clusters they produce. Therefore, determining an optimal number of clusters is an important challenge for these algorithms. In practice, evolving models can change their general structure by implementing different mechanisms. This paper presents a fuzzy model that mainly consists of an evolving Cauchy clustering algorithm which is updated through a specific membership function and determines the optimal number of clusters by implementing two evolving mechanisms: adding and splitting clusters. The proposed model was tested on six different streaming datasets, namely, power supply, sensor, HuGaDB, UCI-HAR, Luxembourg, and keystrokes. The results demonstrated that the efficiency of the proposed model in producing an optimal number of clusters for each dataset outperforms that of previous models.

목차

Abstract
1. Introduction
2. Related Work
3. Proposed Method
4. Dataset Description
5. Results and Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-003-000186708