메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
류권상 (공주대학교) 서창호 (공주대학교) 최대선 (공주대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제27권 제6호
발행연도
2017.12
수록면
1,419 - 1,429 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 환경기반 인증 기술로 사용자의 로그인 히스토리를 계정도용 또는 정상 로그인으로 분류한 후 사용자별로 통계모델을 만들어 사용자를 인증하는 Reinforced authentication이 제안되었다. 하지만 Reinforced authentication은 사용자가 과거에 계정도용을 당한 적이 없으면 공격을 당할 가능성이 높다. 본 논문은 이러한 문제점을 해결하기 위해 기계학습 알고리즘을 이용하여 사용자 환경정보와 타인의 환경정보를 함께 학습시켜 2-Class 사용자 모델을 만드는 무자각 인증 기술을 제안한다. 제안한 기술의 성능을 평가하기 위해 목표 사용자에 대해 아무 정보도 없는 무 지식 공격자와 목표 사용자에 대해 한 가지의 정보만 알고 있는 정교한 공격자에 대한 Evasion Attack을 실험하였다. 무 지식공격자에 대한 실험 결과 Class 0의 Precision과 Recall 각각 1.0과 0.998로 측정되었으며, 정교한 공격자에 대한 실험결과 Class 0의 Precision과 Recall 각각 0.948과 0.998로 측정되었다.

목차

요약
ABSTRACT
I. 서론
II. 관련연구
III. 결제 환경정보 기반 무자각 인증 기술
IV. 실험 및 고찰
V. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001716024