메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jung Hwi Roh (Hankuk University of Foreign Studies) Iksoo Kwon (Hankuk University of Foreign Studies)
저널정보
담화·인지언어학회 담화·인지언어학회 학술대회 발표논문집 2017년 담화인지언어학회 가을 공동학술대회 [2개 학회 공동개최]
발행연도
2017.11
수록면
297 - 311 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper aims to explore multimodality within a framework of cognitive semantics by conducting a case study of political cartoons 〈stay out of my hair〉 with special focus on the optimal manifestations of conceptual metaphors (Lakoff and Johnson 1999) and blends (Fauconnier 1997) in them. What this study means by cartoons 〈stay out of my hair〉 are those which have been published from January to August in 2017 to illustrate escalating tensions over the issue of developing nuclear weapons in North Korea (NK) between NK and the United States (US) after Donald Trump was elected president of the US. This study looks into the ones that employ one of the salient parts of the two political leaders—hair. Total 26 relevant cartoons were collected from multiple public webpages and the study identifies the phenomenon that a number of cartoons use the original hairstyles of the political figures to satirize their political actions or to show conflicts and their unpleasant emotions. This study provides a qualitative analysis of five selected cartoons to clarify how the salient part constitutes the overall construal of the cartoon within a framework of cognitive semantics. It then argues that cognitive mechanisms such as conceptual metaphors and blending are productively employed to convey intended messages via multiple modes – both verbal and imagery means (Forceville 2008, Dancygier and Sweetser 2012).

목차

Abstract
1. Introduction
2. Backgrounds
3. Data Collection
4. Data analysis and discussion
5. Concluding Remarks
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-701-001571767