메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jin Wang (Southeast University) Jian-Min He (Southeast University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2017
발행연도
2017.10
수록면
498 - 504 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Mutual information (MI) and transfer entropy (TE) are employed to measure correlation and interdependence between stocks. Based on algorithms of Minimal Spanning Tree (MST) and Planar Maximally Filtered Graph (PMFG), redundant information contained in fully connected networks represented by MI and TE matrices are filtered and according networks are constructed. It is found that the MST of MI constructed on full sample of data, i.e. from January 1, 2007 to December 30, 2016, follows the power-law distribution. Most MSTs constructed on subsamples, a window length of about one calendar year rolling for one calendar month, also follow the power-law distribution. Small-world behavior of PMFGs constructed on both MI and TE calculated from all sub-samples is observed. We further find that correlation between intra-sector stocks is generally greater than its inter-sector equivalent. However, stocks from sectors with large intra-sector interdependence also interact intensively with stocks from other sectors. These results suggest different characteristics of intra- and inter-sector correlation and interdependence structure in the stock market.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EMPIRICAL STUDY AND ANALYSIS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001426611