메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제27권 제3호
발행연도
2016.6
수록면
629 - 638 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근에 많이 활용되고 있는 데이터 분석을 위한 연관성 규칙 마이닝은 대용량 데이터베이스에 많이 활용되고 있는 서 두 항목간의 관계를 측도화 함으로써 두 개 이상의 항목간의 관련성을 표시하여 주는 기법이다. 연관성 규칙의 여부를 판단하기 위한 연관성 평가 기준에는 지지도, 신뢰도, 그리고 향상도 등이 있으며, 이들 세 가지 기준을 이용하여 연관성 규칙 생성 여부를 판단하게 된다. 이에 대한 기존의 연구 결과는 결정함수를 이용하는 방법과 회귀모형을 이용하는 방법으로 분류할 수 있다. 회귀모형을 이용하여 수행한 연구에는 지지도와 신뢰도에 의한 모형, 세 가지 평가 기준의 쌍에 의한 모형, 표준화 향상도를 포함한 세 가지 평가 기준의 쌍에 의한 모형, 그리고 세 가지 평가 기준 전부를 고려한 모형 등이 있다. 본 논문에서는 기존의 연구를 확장하는 의미에서 표준화 향상도를 포함한 세가지 평가 기준 전부를 고려한 비선형 회귀모형을 이용하여 연관성 규칙의 수를 추정하는 방안에 대해 강구하고자 한다. 또한 분산분석에서의 F 통계량과 수정 결정계수를 이용하여 각 모형의 유의한 정도를 비교하는 동시에 분산팽창계수에 의한 공선성 문제를 진단함으로써 가장 유용한 회귀 모형을 탐색하고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001377968