메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제22권 제4호
발행연도
2011.8
수록면
671 - 678 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터마이닝은 방대한 양의 데이터 속에서 쉽게 드러나지 않는 유용한 정보를 찾아내는 기법으로서 의사결정나무, 연관 규칙, 군집분석, 신경망 분석 등의 기법이 있으며, 이중 의사결정나무 알고리즘은 의사결정 규칙을 도표화하여 관심대상이 되는 집단을 몇 개의 소집단으로 분류하거나 예측을 수행하는 방법으로서 고객세분화, 고객 분류, 문제 예측 등의 여러 분야에서 유용하게 활용되고 있다.일반적으로 의사결정나무의 모형 생성 시, 모형 생성의 기준 및 입력 변수의 수에 따라 복잡한 모형이 생성되기도 하며 특히 입력 변수의 수가 많을 경우 종종 모형 생성 및 해석에 있어 어려움을 격기도 한다. 이에 본 논문에서는 의사결정나무 생성 시, 입력 변수에 대한 매개 관계를 파악하여 나무 생성에 불필요한 입력 변수를 제거하는 방법을 제시하고 그 효율성을 파악하기 위하여 실제 자료에 적용하고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001381075