메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jung-Hyung Park (Sungkyunkwan University) Kyu-Seok Lee (Korea Institute of Industrial Technology) Sung-Ho Lee (Korea Institute of Industrial Technology) Sang-Yong Jung (Sungkyunkwan University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.22 No.3
발행연도
2017.9
수록면
430 - 434 (5page)
DOI
10.4283/JMAG.2017.22.3.430

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents an optimization design and experiment of a high speed motor (HSM) for underwater thrusting systems by using magnetic flux density distribution (MFDD) of the stator, based on finite element analysis (FEA). The MFDD in the HSM is closely related to the electro-magnetic loss. This is an important factor when considering increasing efficiency, miniaturization, and reducing overall weight. To this end, a volumetric design of the rotor, which directly affects the magnetic flux density (MFD), was carried out using torque per rotor volume and a design line of electro-motive force. Calculation of the MFDD of the stator was derived from the area of the triangular element by the 2-D finite element method using the element node and the center of gravity. The flux density inside the element was derived by FEA. The maximum density distribution (MDD) and average density distribution (ADD) of the MFDD for the variable area (yoke, tooth, and shoe) of the stator core are presented. Efficiency optimization was performed by calculating the iron loss and efficiency reduction ratio using the ADD. On the basis of the manufactured 2.5 [kW] HSM, the optimal design of the MFDD was verified by comparing the FEA results with the experimental results at the rated operating point.

목차

1. Introduction
2. Rotor Design of High Speed Motor
3. Optimization Design of Magnetic Flux Density Distribution
4. Experimental Verification
5. Conclusion
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-428-001276234