메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiao-Guang Zhang (North China University of Technology) Ke-Qin Wang (North China University of Technology) Ben-Shuai Hou (North China University of Technology)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.17 No.5
발행연도
2017.9
수록면
1,211 - 1,222 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

목차

Abstract
I. INTRODUCTION
II. SPMSM MODEL
III. DEADBEAT DIRECT TORQUE CONTROL
IV. PARAMETER SENSITIVITY ANALYSIS OF THE DEADBEAT DIRECT TORQUE CONTROL
V. LOW PARAMETER SENSITIVITY DEADBEAT DIRECT TORQUE CONTROL
VI. SIMULATION AND EXPERIMENTAL RESULTS
VII. CONCLUSIONS
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-560-001272311