메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김연욱 (인하대학교) 조우형 (인하대학교) 전유용 (인하대학교) 이상민 (인하대학교)
저널정보
한국재활복지공학회 재활복지공학회논문지 재활복지공학회논문지 제11권 제3호
발행연도
2017.8
수록면
261 - 270 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
바르지 못한 앉은 자세는 다양한 질병과 신체 변형을 유발한다. 하지만 오랜 시간동안 바른 앉은 자세를 유지하는 것은 쉬운 일이 아니다. 이러한 이유 때문에 그동안 자동으로 바른 앉은 자세를 유도하기 위한 다양한 시스템이 제안되어왔다. 이전에 제안되었던 앉은 자세 판별 및 바른 앉은 자세 유도 시스템은 영상 처리를 이용한 방법, 의자에 압력센서를 달아 측정하는 방법, IMU(Internal Measurement Unit)를 이용한 방법이 있었다. 이 중 IMU를 이용한 측정 방법은 하드웨어 구성이 간단하고, 공간, 광량 등의 환경적 제한이 적어 측정에 있어서 용이한 이점이 있었다. 본 논문에서는 하나의 IMU를 이용하여 적은 데이터로 효율적으로 앉은 자세를 분류하는 방법을 연구하였다. 특징추출 기법을 이용하여 데이터 분류에 기여도가 낮은 데이터를 제거하였으며, 머신러닝 기법을 이용하여 앉은 자세 분류에 적합한 센서 위치를 찾고, 여러 개의 머신러닝 모델 중 가장 분류 정확도가 높은 머신러닝 모델을 선정하였다. 특징추출 기법은 PCA(Principal Component Analysis)를 사용하였고, 머신러닝 모델은 SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model)모델을 사용하였다. 연구결과 데이터 분류율이 높게나온 뒷목이 적합한 센서 위치가 되었으며, 센서 데이터 중 Yaw데이터는 분류 기여도가 가장 낮은 데이터임을 PCA 특징추출 기법을 이용하여 확인하고, 제거하여도 분류율에 영향이 매우 작음을 확인하였다. 적합 머신러닝 모델은 SVM, KNN 모델로 다른 모델에 비하여 분류율이 높게 나오는 것을 확인할 수 있었다.

목차

요약
ABSTRACT
1. 서론
2. 이론적 배경
3. 연구내용
4. 결론
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-512-001264019