메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
EuiHwan Han (Graduate School of Soongsil University) HyungTai Cha (Soongsil University)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제54권 제7호 (통권 제476호)
발행연도
2017.7
수록면
71 - 78 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
감정을 분류하는 대표적인 알고리즘에는 Support-vector-machine (SVM), Bayesian decision rule 등이 있다. 하지만 기존의 연구자들은 위와 같은 방법에는 문제점이 있다고 지적하였다. 이를 보완하기 위해 다른 연구자는 경사도를 이용하여 새로운 패턴인식 알고리즘을 제안하였다. 본 논문에서는 이 알고리즘을 통해 새로운 EEG 기반의 감정 인식 알고리즘을 제안하고 기존의 연구와 비교한다. 본 논문에서는 신뢰도 높은 자료를 얻기 위해 여러 논문에서 사용된 DEAP (a database for emotion analysis using physiological signals)를 사용하였다. 또한, 객관적인 검증을 위해 기존의 연구에서 사용된 4개의 뇌파 채널(Fz, Fp2, F3, F4)의 PSD (Power Spectral Density)를 특징으로 사용하여 감정의 2개 척도 (Arousal, Valence)를 분류하였다 본 논문에서 실시한 교차검증 (4-fold)에 의하면 Valence 축에서 85%, Arousal 축에서 87.5의 정확도를 얻을 수 있었다.

목차

요약
Abstract
Ⅰ. Introdution
Ⅱ. Related Work
Ⅲ. Troubleshooting
Ⅳ. The Proposed Algorithm
Ⅴ. Results and Conclusion
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001256429