메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손성민 (한국과학기술원) 조성국 (한국과학기술원) 허진영 (한국과학기술원) 이정익 (한국과학기술원)
저널정보
한국에너지기후변화학회 에너지기후변화학회지 에너지기후변화학회지 Vol.12 No.1
발행연도
2017.6
수록면
35 - 43 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Today, securing environmental friendly energy source became an important global issue. Such energy source can be developed by using a new resource or using the existing energy resource more efficiently. Recently substantial attention was given to the supercritical CO₂ power cycle which can transform the existing electricity production method. The supercritical CO₂ power cycle has advantages of small turbomachinery, simple system, and high thermal efficiency. However, due to non-linear properties’ variation near the critical point, the off-design performance prediction of the cycle still requires further research. Thus, the research team have analyzed the off-design behavior of the supercritical CO₂ cycle according to the temperature change of the heat sink. The target cycle in the study is a 100 MW scale supercritical CO₂ recompression Brayton cycle layout, and the off-design behavior was analyzed when the temperature of the heat sink increases from the design point of 32 °C to 50 °C. The system maximum pressure was assumed to be remained the same as the design point. In the analyzed temperature range, the system efficiency is calculated to decrease by 11.5%p from 44% to 32.5%, and the thermodynamic work of the cycle is expected to decrease by about 38MW, from 108 MW to 70 MW. In the process of changing the system minimum pressure during the analysis, necessity for new optimizations to meet the off-design operating condition was found. This suggests that optimizing the rpm of the turbomachinery and the overall system capacity to meet operating conditions will be an important research topic in the future.

목차

ABSTRACT
1. 서론
2. 사이클 모델링 및 해석
3. 준정상 상태 해석
4. 결론
Reference

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-453-001213267