메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
EunJu Lee (Keimyung University) MinCheol Hwang (Keimyung University) Jae-Yeal Nam (Keimyung University) ByoungChul Ko (Keimyung University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2015 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.7 No.1
발행연도
2015.6
수록면
177 - 181 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Pedestrian pose recognition is important work for early accident prevention in advance driver assistance system (ADAS). In particular, because most pedestrian-vehicle crashes are occurred from late of night to early of dawn, our study focus on recognizing unsafe pose using thermal image captured from moving vehicle. For feature extraction from images, we apply histogram of gradient (HOG) and oriented center symmetric local binary patterns (OCS-LBP) to the input image as convolutional filters. Then the feature maps are generated from convolutional filters and we apply spatial pyramid pooling to the feature maps to extract global and local feature together and maintain spatial information by pooling local spatial bins. After feature extraction, all feature descriptors are aggregated as one descriptor and it is applied to boosted random forest to classify pedestrian poses with small number of decision trees. Boosted random forest maintain generality with small number of decision trees by using the fact that sequential training constructs complementary decision trees for the training samples. To make the unsafe poses that can encounter while driving a vehicle, we define six poses such as ‘standing’, ‘running’, ‘walking’, ‘sitting’, ‘collapsing’, and ‘view-back’ and collect 150 test images containing individual pose. The proposed algorithm is successfully applied to test thermal images and showed good performance on six different poses.

목차

Abstract
I. INTRODUCTION
II. FEATURE EXTRACTION
III. SPATIAL PYRAMID POOLING (SPP)
IV. Image classification using Boosted Random Forests(BRFS)
V. Experimental Results
VI. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-000971087