메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 학술대회논문집 한국산학기술학회 2009년도 춘계학술발표대회 논문집
발행연도
2009.5
수록면
768 - 771 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
현재 음성인식에서 가장 많이 사용하고 있는 특징벡터는 MFCC(Mel-Frequency Cepstral Coefficients)이다. 그러나 MFCC도 잡음이 존재하는 환경에서는 인식 성능이 저하된다. 이러한 MFCC의 단점을 해결하기 위해 mel sub-band 스펙트럼 차감법과 신호대잡음비에 따른 에너지 압축을 이용하는 CMSBS(Compression and Mel Sub-Band Spectral subtraction) 방법을 사용한다. 본 논문에서는CMSBS 방법 적용 시 음성이 발성되는 구간과 묵음 구간에서 mel sub-band 스펙트럼 차감법이 동일한 조건으로 이루어져 발생하는 중요한 음성정보의 손실을 보완하기 위하여 신호의 주기성을 이용하여 spectral flooring 파라미터를 변형하는 방법을 제안한다. 제안한 방법으로 실험을 한 결과 잡음이거의 없는 음성신호에 대해서는 기존의 방법과 비슷한 인식률을 가지고, 잡음성분이 많을수록 변형된mel sub-band 스펙트럼 차감법을 적용한 방법이 인식률에서 보다 높은 성능 향상을 가져왔다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001068181