메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박인철 (국가과학기술인력개발원) 박종호 (서남대학교) 류지형 (한국전자통신연구원) 김형주 (한국전자통신연구원) 정길도 (전북대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제18권 제4호
발행연도
2017.4
수록면
358 - 365 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 산업용 매니퓰레이터의 작업 성능 향상을 위하여 영상 기반의 물체 인식 방법을 제안하였다. 기존 산업용 매니퓰레이터의 경우 대부분 산업 현장에서 제공하는 정보만을 활용해 산업용 매니퓰레이터를 동작시킴으로써 작업물체 틀어짐 등에 대한 문제를 고려하지 않고 있기에 보다 안정적인 작업을 수행하는데 있어 문제점이 발생할 수 있다. 본 연구에서 사용된 물체인식 방법은 기존의 Harris Coner 알고리즘의 인식률 향상을 위하여 HSV채널로부터 색상정보를 포함한 V채널과 배경분리가 용이한 S채널을 분리 한 뒤 이를 바탕으로 Otsu Thresholding 기법을 적용하였다. 이를 통해 작업물체를 보다 정확하게 인식하고 만약 작업 물체가 외부요인에 의하여 정확한 위치에 놓여있지 않거나 뒤틀어져 있는 경우 신속하게 확인한 후 원활한 작업을 위해 산업용 매니퓰레이터의 동작 제어를 수행하는 것으로 실제 산업용 매니퓰레이터에 적용한 후 실험을 통하여 이를 검증하였다. 이는 실제 공장 시스템에서 갑작스런 사람의 유입 혹은 외부요인에 의한 작업물체의 변화 등의 문제점에 대하여 강인하고 유연하게 대처하며 오류로 인한 작업공정의 중단을 사전에 방지함으로서 전체 시스템 가동시간의 효율성을 증대시키는 결과를 가져올 수 있다.

목차

요약
Abstract
1. 서론
2. 본론
3. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0