메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jongsup Jun (한국외국어대학교)
저널정보
담화·인지언어학회 담화와인지 담화와인지 제24권 제2호
발행연도
2017.5
수록면
73 - 94 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Ionin, Ko & Wexler (2008, =IKW) investigate how two universal semantic features, i.e. [+ definite] and [+ specific], constrain Russian and Korean adult speakers’ acquisition of L2 English articles. Russian and Korean speakers are of particular interest to IKW, since they are assumed to have full access to the parameters of the universal semantic features as speakers of articleless languages. Based on the frequency counts of article errors in written narrative data of these speakers, they conclude that universal semantic features play a crucial role in L2 acquisition. One problem of IKW is that they were trapped in the notorious familywise error rate problem (in statistics) by conducting multiple Chi-square tests on the single dataset. To overcome this problem, I recovered IKW’s raw data into a multi-way cross-tabulation defined by four categorical variables, and conducted log-linear regression analyses. A thorough interpretation of the estimated parameters reveals that the L2 acquisition of English articles is not constrained by universal semantic features, but by the adult learners’ L1 knowledge. In the end, I discuss what the Science journal editor dubbed the problem of honest mistakes in relation to inappropriate statistical analyses of language data.

목차

1. Introduction
2. Why L2 Learners of English Misuse English Articles: The Empirical Concern and Earlier Works
3. IKW’s Investigation and How They Went Wrong
4. New Perspectives on the Existing Data: Performing Log-Linear Regression on IKW’s Data
8. Summary of the Critique with Discussion
9. Concluding Remark: Honest Mistakes in Linguistics
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0