메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현재 (서울대학교) 이재구 (서울대학교) 김규완 (서울대학교) 윤성로 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제23권 제4호
발행연도
2017.4
수록면
244 - 249 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
스테그아날리시스(Steganalysis)란 이미지 등 일반적인 자료에 암호화된 정보를 은닉하는 스테가노그래피(Steganography)에 대한 검출 및 분석 방법으로, 기계학습 기반 방법론을 포함한다. 기존 기계학습 기반 스테그아날리시스는 영상(Image)의 특징(Feature) 추출 및 모델링에 기반하며, 최근 딥러닝(Deep Learning)의 적용으로 검출 정확도가 큰 폭으로 향상되었다. 하지만 현존하는 스테그아날리시스 모델은 단일 스테가노그래피 기법에 대해 국한되어 있어 학습에 사용되지 않은 스테고(Stego) 이미지의 경우 검출이 불가능한 결정적 한계를 가진다. 본 연구에서는 다양한 스테가노그래피 기법으로 생성된 스테고이미지에 딥러닝을 적용하여 스테그아날리시스를 학습하는 범용적 모델을 제안한다. 다양한 실험을 통해 제안 기법의 효용성 및 가능성을 확인하고, 범용적 스테그아날리시스 모델이 각각에 특화된 검출 기법과 유사한 정확도로 스테고 이미지를 검출할 수 있음을 보인다.

목차

요약
Abstract
1. 서론
2. 배경 이론
3. 실험
4. 실험 결과
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0