메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박홍련 (충북대학교) 최재완 (충북대학교)
저널정보
대한공간정보학회 대한공간정보학회지 한국지형공간정보학회지 제25권 제1호 (통권 제79호)
발행연도
2017.3
수록면
9 - 17 (9page)
DOI
10.7319/kogsis.2017.25.1.009

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
초분광 영상(hyperspectral imagery)은 주성분분석이나 최소잡음비율 등을 이용하여 자료의 차원과 잡음을 감소시켜 토지피복분류에 사용되는 것이 일반적이다. 최근에는 분광정보와 공간적 특성을 가진 다양한 입력 자료를 이용한 감독분류에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 초분광 영상을 이용한 토지피복분류를 위해 principle component(PC) 밴드와 normalized difference vegetation index(NDVI) 자료를 감독분류의 입력자료로 활용하였다. NDVI 자료는 초분광 영상에서 추출된 PC 밴드가 포함하고 있지 않는 추가적인 정보를 활용하여 식생지역에 대한 토지피복분류 정확도를 높이고자 사용하였으며, morphological filter를 통해 각 밴드의 extended attribute profiles(EAP)를 제작하여 분류를 위한 입력 자료로 사용하였다. 감독분류기법은 random forest 알고리즘을 이용하였으며, EAP를 기반으로 다양한 입력 자료의 적용에 따른 분류정확도를 비교하고자 하였다. 연구지역으로는 두 대상지를 선정하였으며, 영상 내에서 취득한 참조자료를 이용하여 정량적인 평가를 수행하였다. 본 연구에서 제안한 기법의 분류정확도는 85.72%와 91.14%로 다른 입력 자료들을 이용한 경우와 비교하여 가장 높은 분류정확도를 나타냈다. 향후, 초분광 영상을 이용한 토지피복분류의 정확도를 높이기 위한 분류 알고리즘 개발과 대상지역 특성에 맞는 추가 입력자료 개발에 관한 연구가 필요할 것으로 사료된다.

목차

要旨
Abstract
1. 서론
2. 연구자료 및 대상지역
3. 연구방법
4. 실험결과 및 분석
5. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-452-002294769