메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동환 (서울대학교) 엄현상 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제23권 제3호
발행연도
2017.3
수록면
165 - 170 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
GPGPU의 높은 연산 처리 능력을 활용하여 길고 복잡한 계산을 하려는 시도가 많이 있다. GPGPU 프로그램의 특성상 host와 device 사이에 메모리 복사가 필요하다. 해당 메모리 복사 latency가 길 경우 프로그램의 성능에 많은 영향을 준다. 그래서 GPGPU를 활용한 프로그래밍은 최적화에 따른 성능 차이가 크다. 여러 개의 GPGPU 프로그램을 동시에 실행시키면 메모리 복사와 GPGPU 컴퓨팅이 중첩이 되어 메모리 복사 latency hiding 효과를 기대할 수 있다. 이 논문에서는 메모리 복사 latency hiding 을 분석한다. 또 메모리 복사의 성능을 높이기 위해 pinned memory를 사용했을 경우의 제약 조건에 따른 성능 예측 모델링 및 알고리즘을 제안하고 이를 바탕으로 실행할 워크로드를 선택하면 41%의 성능 향상을 보인다.

목차

요약
Abstract
1. 서론
2. GPGPU 성능 분석
3. Pinned memory 사용 시 성능향상의 모델링
4. 결론
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0