메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김남규 (국민대학교) 이동훈 (국민대학교) 최호창 (국민대학교) William Xiu Shun Wong (국민대학교)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제42권 제2호
발행연도
2017.2
수록면
471 - 492 (22page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 데이터의 양 자체가 해결해야 할 문제의 일부분이 되는 빅데이터(Big Data) 분석에 대한 수요와 관심이 급증하고 있다. 빅데이터는 기존의 정형 데이터 뿐 아니라 이미지, 동영상, 로그 등 다양한 형태의 비정형 데이터 또한 포함하는 개념으로 사용되고 있으며, 다양한 유형의 데이터 중 특히 정보의 표현 및 전달을 위한 대표적 수단인 텍스트(Text) 분석에 대한 연구가 활발하게 이루어지고 있다. 텍스트 분석은 일반적으로 문서 수집, 파싱(Parsing) 및 필터링(Filtering), 구조화, 빈도 분석 및 유사도 분석의 순서로 수행되며, 분석의 결과는 워드 클라우드(Word Cloud), 워드 네트워크(Word Network), 토픽 모델링(Topic Modeling), 문서 분류, 감성 분석 등의 형태로 나타나게 된다. 특히 최근 다양한 소셜미디어(Social Media)를 통해 급증하고 있는 텍스트 데이터로부터 주요 토픽을 파악하기 위한 수요가 증가함에 따라, 방대한 양의 비정형 텍스트 문서로부터 주요 토픽을 추출하고 각 토픽별 해당 문서를 묶어서 제공하는 토픽 모델링에 대한 연구 및 적용 사례가 다양한 분야에서 생성되고 있다. 이에 본 논문에서는 텍스트 분석 관련 주요 기술 및 연구 동향을 살펴보고, 토픽 모델링을 활용하여 다양한 분야의 문제를 해결한 연구 사례를 소개한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 텍스트 분석 관련 기술 및 연구 동향
Ⅲ. 토픽 모델링 활용 방법론
Ⅳ. 결론
References

참고문헌 (120)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-567-002325387