메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jong Hwan Kim (Samsung Electronics) Byung Yong Jeong (Hansung University) Myoung Hwan Park (Hansung University)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제35권 제6호
발행연도
2016.12
수록면
611 - 619 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective:This study aims to analyze the relationships between personality factors measured by Minnesota Multiphasic Personality Inventory (MMPI) scales and the indices of safety and health in the shipbuilding industry.
Background: Many researches reported that there were significant relationships between some MMPI subscales and traffic and industrial accidents.
Method: This study analyzes 230 male workers in shipyard for their MMPI scores gathered during recruitment process and their safety and health indices from the performance record during their working period. χ2-test and one-way ANOVA are used for finding the statistical significance for personality factors. The conventional grouping rule for MMPI scales and other grouping criteria considering the attitude of positive answer for the MMPI test during recruitment process are used for analysis.
Results: The Hypomania (Ma) and Psychopathic Deviate (Pd) scales of the MMPI are the main factors related to the safety and health related indices for most grouping rules. Depression (D), Psychasthenia (Pt), Hypochondriasis (Hs), Schizophrenia (Sc), and Masculinity and Femininity (Mf) scales are also related to the safety and health indices.
Conclusion and Application: The results can be used for understanding the psychological factors in human behaviors and safety and can help professional personnel take the necessary steps in improving safety on the job and also in providing the effective teaching of safe work methods.

목차

1. Introduction
2. Methods
3. Results
4. Conclusion and Discussion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-530-002201630