메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손창식 (DGIST) 최락현 (DGIST) 강원석 (DGIST) 이종하 (계명대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제21권 제6호
발행연도
2016.12
수록면
13 - 21 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
특징선택은 데이터 마이닝, 기계학습 분야에서 가장 중요한 이슈 중 하나로, 원본 데이터에서 가장 좋은 분류 성능을 보여줄 수 있는 특징들을 찾아내는 방법이다. 본 논문에서는 정보 입자성을 기반으로한 neighborhood 러프집합 모델을 이용한 특징선택 방법을 제안한다. 제안된 방법의 효과성은 5,252명의 유방 초음파 영상으로부터 추출된 298가지의 특징들 중에서 유방 종양의 진단과 관련된 유용한 특징들을 선택하는 문제에 적용되었다. 실험결과 19가지의 진단적 특징을 찾을 수 있었고, 이때에 평균 분류 정확성은 97.6%를 보였다.

목차

요약
Abstract
1. 서론
2. 연구방법
3. 실험결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-530-001983855