메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영재 (한양대학교)
저널정보
한국생활과학회 한국생활과학회지 한국생활과학회지 제25권 제6호
발행연도
2016.12
수록면
749 - 760 (12page)
DOI
10.5934/kjhe.2016.25.6.749

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study was aimed to draw objective results for the images of Korean wave actresses, using statistical methods.
Four Korean wave actresses, Young-ae Lee, Jee-hyun Jun, Hae-Gyo Song, and Jee-woo Choi, were selected by surveying foreign students studying in Korean universities. The survey aimed to list ‘adjectives’ associating their image cuts by the free association method. A total of 26 adjective pairs were finally selected, for which the cluster analysis of Ward’s method were performed. Also, for comparative analysis of their images, factorial analysis using the principal component analysis and varimax rotation was performed. One-way analysis of variance and Scheffe’s method for the adjective pairs was done by using factor scores obtained from this study.
We observed that Korean wave actresses have their own images, and the results of this study are summarized as follow:
The comparativeness analysis shows that Young-ae Lee is superior in the dignity factor, but low in fashion as a factor. Jee-hyun Jun is remarkable in attractiveness and fashion, and has the highest fashioning factor score. Jee-woo Choi is equal for attractiveness, fashioning, and activeness, and is most ‘feminine’ in fashioning. Hae-Gyo Song is quite different from other actresses, and is considered ‘pretty’ in the attractiveness factor, and ‘sportive’ in the fashion factor.
We suggest that Korean export companies should apply these results to fashion products for countries where trade is thriving with the Korean wave boom. We expect that the sales would be considerably increased.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구방법 및 절차
Ⅲ. 드라마 · 영화에 나타난 한류 여배우 이미지
Ⅳ. 결과 및 토의
V. 결론
REFERENCE

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-590-001982903