메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mi Jang (Hanyang University)
저널정보
서울대학교 언어교육원 어학연구 어학연구 제52권 제3호
발행연도
2016.12
수록면
533 - 555 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The current study investigated how tonal and non-tonal dialect speakers of Korean perceived the voicing contrast of English stops across different prosodic boundaries and accent conditions. Voice onset time and fundamental frequency of target segment were systematically manipulated across IP and Wd levels under accented and unaccented conditions. Both non-tonal Seoul and tonal Kyungsang listeners required a longer VOT for the perception of English voiceless stop in the IP level than in the Wd level. The ambiguous VOT range was also found to be different between the IP and Wd levels and a relatively higher onset F0 was required in the perception of voiceless stop for the stimuli in the ambiguous VOT range. The results from logistic regression analyses revealed that for both dialect groups, the effect of position was found to be significant, while the effect of accent was not found to be significant. The coefficient value of the VOT was greater than that of onset F0 for both dialect groups, meaning that when distinguishing the voicing contrast of English stop across different prosodic conditions, both dialect listeners used VOT as a primary and F0 as a secondary perceptual cue. However, the two dialect groups showed differences in the weight of each VOT and onset F0: Kyungsang listeners showed greater coefficient values of VOT and onset F0 than Seoul listeners. When the different prosodic conditions were given in the perception of the voicing contrast of L2, the preference and weightings of the perceptual cues were affected by the dialect of L2 learner’s native language.

목차

1. Introduction
2. Methods
3. Results
4. Discussion
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-701-001980015