메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Anuntapat Anuntachai (King Mongkut’s Institute of Technology Ladkrabang) Arit Thammano (King Mongkut’s Institute of Technology Ladkrabang) Olarn Wongwirat (King Mongkut’s Institute of Technology Ladkrabang)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
382 - 387 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A challenge in searching an optimal route of a mobile robot involves finding the route that has the shortest distance and consumes the least energy. To solve this problem, an ant colony optimization (ACO) algorithm can be used, but only on a flat terrain, since the energy depends directly on the distance. In a rough terrain, the least energy route might not be the shortest distance. Also, the shortest distance route might not be the least energy. This is due to a factor of slope in the route. Although our adapted ACO can be used for searching energy-efficient routes in the rough terrain, it is difficult to achieve the shortest distance simultaneously. This paper proposes a novel method to find an optimal route of a mobile robot in rough terrain environment by using a Pareto solution with adapted ACO. In the proposed method, the adapted ACO is used to search two sets of route, i.e., one contains the least energy and another one contains the shortest distance. Then, the Pareto solution is deployed to find the optimal route in terms of energy and distance by adopting a distance vector for selection. The experiment was performed by simulation to verify the proposed searching method. The experimental results show that the proposed searching method can prescribe the optimal value for choosing the route provided by adapted ACO.

목차

Abstract
1. INTRODUCTION
2. ROUGH TERRAIN AND ENERGY EXPENDITURE MODELS
3. PARETO SOLUTION WITH ADAPTED ACO SEARCHING METHOD
4. EXPERIMENT AND RESULTS
5. CONCLUSSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001868464