메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Moussa Hamadache (Kyungpook National University) Dongik Lee (Kyungpook National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
1,579 - 1,584 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Early detection of bearing faults is very critical since they cannot be compensated using analytical methods, such as reconfigurable control. From the surveys of current conditions monitoring (CM) systems, there is a clear tendency towards vibration monitoring of wind turbines (WTs). It is likely that this tendency will continue, however it would be reasonable to assume that other CMs and diagnosis techniques will be incorporated into existing systems, with major innovation in terms of developing signal processing techniques. In particular, the industry is already noting the importance of operational parameters such as load and speed and so techniques may begin to adapt further to the WT environment leading to more reliable CM systems, diagnostics and alarm signals. Therefore, this paper presents a Wind Turbine Main Bearing (WTMB) fault detection method via speed signal analysis under constant load providing a benefit in terms of cost, and space. Since process history-based bearing fault detection has considerable advantages in terms of simplicity and implementation, the presented WTMB fault detection method base on Absolute Value Principal Component Analysis (AVPCA) technique. A set of bearing faults with outer-race, inner-race, and ball/roller failure are evaluated to demonstrate the performance and effectiveness of the proposed method.

목차

Abstract
1. INTRODUCTION
2. BEARING FAULT MODELING AND CHARACTERISTIC FREQUENCIES
3. SIMULATION RESULTS
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001867770