메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Van Nhan Nguyen (Østfold University College) Harald Holone (Østfold University College)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
1,309 - 1,314 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Recently, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as ATC simulation and training, monitoring live operators for with the aim of safety improvements, ATC workload measurement and conducting analysis on large quantities of controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, ASR has not been widely adopted in this field. In this paper, in order take advantage of the opportunities offered by the ATC context such as standardized phraseology and small vocabulary size to reduce the Word Error Rate (WER) of ASR in ATC, we perform n-best list re-ranking using syntactic knowledge. We propose a novel feature called syntactic score which is computed using syntactic rules. We also propose a WER-Sensitive Pairwise Perceptron algorithm and use the perceptron to combine the proposed feature with the decoder’s confidence score. We integrate the model into the Pocketsphinx speech recognizer and evaluate the model in terms of Word Error Rate (WER) on the well known ATCOSIM and our own ATCSC corpora. The results shows that our proposed approach reduces 1.21% and 0.21% WER on the ATCSC and ATCOSIM corpora respectively.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND AND RELATED WORKS
3. PRELIMINARY TESTS
4. FEATURES FOR N-BEST LIST RE-RANKINNG
5. N-BEST LIST RE-RANKING WITH PERCEPTRON
6. EVALUATING SETTINGS AND RESULTS
7. DISCUSSION
8. CONCLUSION AND FURTHER WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001867472