메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Barun Basnet (Chonbuk National University) Injae Lee Myungjun Noh Hyunjun Chun (Chonbuk National University) Aman Jaffari (Chonbuk National University) Junho Bang (Chonbuk National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제65권 제10호
발행연도
2016.10
수록면
1,755 - 1,760 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Automation of greenhouses has proved to be extremely helpful in maximizing crop yields and minimizing labor costs. The optimum conditions for cultivating plants are regularly maintained by the use of programmed sensors and actuators with constant monitoring of the system. In this paper, we have designed a prototype of a smart greenhouse using Arduino microcontroller, simple yet improved in feedbacks and algorithms. Only three important microclimatic parameters namely moisture level, temperature and light are taken into consideration for the design of the system. Signals acquired from the sensors are first isolated and filtered to reduce noise before it is processed by Arduino. With the help of LabVIEW program, Time domain analysis and Fast Fourier Transform (FFT) of the acquired signals are done to analyze the waveform. Especially, for smoothing the outlying data digitally, Moving average algorithm is designed. With the implement of this algorithm, variations in the sensed data which could occur from rapidly changing environment or imprecise sensors, could be largely smoothed and stable output could be created. Also, actuators are controlled with constant feedbacks to ensure desired conditions are always met. Lastly, data is constantly acquired by the use of Data Acquisition Hardware and can be viewed through PC or Smart devices for monitoring purposes.

목차

Abstract
1. Introduction
2. Smart Greenhouse
3. Hardware Design
4. Software Design
4. Results and Discussions
4. Conclusion
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-560-001343982