메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제12권 제1호
발행연도
2008.3
수록면
65 - 74 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
패턴 분류에 많이 사용되는 기법 중의 하나인 메모리 기반 추론 알고리즘은 단순히 메모리에 저장하고 분류 시에 저장된 패턴과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하는 기법이기 때문에 패턴의 개수가 늘어나면 메모리가 증가하고 또한 추가로 패턴이 발생할 경우 처음부터 다시 수행해야하는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여 이미 학습한 대표패턴을 기억하고 새로 들어오는 패턴에 대해서만 학습하는 점진적 학습 방법을 제안한다. 즉 추가로 학습패턴이 발생할 경우 매번 전체 학습 패턴을 다시 학습하는 것이 아니라, 새로 추가된 데이터만을 학습하여 대표패턴을 추출하여 메모리사용을 줄이는 iMPA(incremental Multi Partition Averaging)기법을 제안하였다. 본 논문에서 제안한 기법은 대표적인 메모리기반 추론 기법인 k-NN 기법과 비교하여 현저하게 줄어든 대표패턴으로 유사한 분류 성능을 보여주며, 점진적 특성을 지닌 NGE 이론을 구현한 EACH 시스템과 점진적인 실험에서도 탁월한 분류 성능을 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-056-001394531