메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Junke Li (Sichuan University) Bing Guo (Sichuan University) Yan Shen (Chengdu University of Information Technology) Deguang Li (Sichuan University) Yanhui Huang (Sichuan University)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.11 No.5
발행연도
2016.9
수록면
1,289 - 1,298 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To cope with the increasing scale of scientific data and computational complexity of daily data, more and more cores have been integrated into GPU(Graphic Processing Units) and its working frequency is continually upgrading, which makes it being widely used in general computing for assisting CPU to accelerate program. While GPU offers powerful computing capability, the problem of the energy consumption becomes particularly prominently and it has become one of the important issues hindering development of GPU. For the purpose of solving this problem, DVFS (Dynamic Voltage Frequency Scaling) becomes an effective solution. Because the previous works only focus on single component and use linear relationship to do DVFS without considering energy saving of other units in system at software runtime, therefore we propose an energy saving model (CDVFS) of considering the characteristics of both GPU and memory at software runtime based on GA-BP (Genetic Algorithm-Back propagation) neural network to make better use of the relationship between components for energy saving. Firstly, the model assumes that functional relation between the software runtime characteristics of GPU and memory and the appropriate frequency which corresponds to the GPU and memory as nonlinear. Secondly, we extract five characteristics and use GA-BP neural network to fit the nonlinear functional relation. At last, experiments demonstrate the effectiveness of the approach and reasonableness of assumption, and also show that CDVFS can get average energy savings of 17.06% compared with previous works within acceptable performance loss.

목차

Abstract
1. Introduction
2. Related works
3. Energy Saving Model
4. Measure the characteristic quantities
5. Nonlinear Fitting of GA-BP Neural Network
6. Nonlinear Fitting of GA-BP Neural Network
7. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-560-000981815