메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권혁호 (한양대학교) 김승욱 (한양대학교) 최동훈 (한양대학교) 이기천 (한양대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제42권 제4호
발행연도
2016.8
수록면
263 - 269 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to challenge a computational regression-type problem, that is handling large-size data, in which conventional metamodeling techniques often fail in a practical sense. To solve such problems, regression-type boosting, one of ensemble model techniques, together with bootstrapping-based re-sampling is a reasonable choice. This study suggests weight updates by the amount of the residual itself and a new error decision criterion which constructs an ensemble model of models selectively chosen by rejection limits. Through these ideas, we propose AdaBoost.RMU.R as a metamodeling technique suitable for handling large-size data. To assess the performance of the proposed method in comparison to some existing methods, we used 6 mathematical problems. For each problem, we computed the average and the standard deviation of residuals between real response values and predicted response values. Results revealed that the average and the standard deviation of AdaBoost.RMU.R were improved than those of other algorithms.

목차

1. 서론
2. 회귀모델을 위한 새로운 부스팅 기법 제안
3. 제안한 알고리즘의 성능 평가방법
4. 결과 및 분석
5. 결론
참고문헌

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-530-000995182