메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
金鐘讚 (安東大學)
저널정보
한국중어중문학회 중어중문학 中語中文學 第63輯
발행연도
2016.3
수록면
195 - 209 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
“Yu” and “Ci” are respectively used in different areas. “Yu” is used in analyzing sentences and “Ci” is used in classification of words. But many Chinese grammarians use “Dongci” in analyzing sentences.
Xing Fuyi pays attention to this phenomenon, and argues that the term of “Dongci” should be replaced by “Dongyu”. Xing Fuyi believes that “Dongyu” is sometimes bigger than a simple verb and it also implies movement or action. Though the term of “Dongyu” is more appropriate than that of “Dongci”, I argue that there are some problems in his viewpoint, because some so-called “Dongyu” don’t imply any movement or action at all.
According to my research, when prepositions are placed behind verbs or adjectives in Chinese, they have the tendency of combining with the prepositioned verbs or adjectives, and role predicates in sentences. Different from “Verbs + prepositions”, “adjectives + preposition ‘Yu’” don’t have any movement or action, so I argue that the term of “Dongyu” is not profitable for these cases. I think that we should adopt the term of “Shuyu” instead, because “Shuyu” isn’t just related to the movement or action, it can also be related to the description about something.
Prepositions have been considered to form the complement with their object, when they are placed after the verbs or adjectives in Chinese. This kind of viewpoint can’t explain the changes in Chinese. In Chinese the prepositions have the tendency of adhering to the verbs or adjectives when they are followed by the verbs or adjectives. In this case I argue that they should be analyzed as “Dongci+Yuzhui” and “Xingrongci+Yuzhui”.

목차

1. 引言
2. “謂语説”
3. “動語說”與“述語說”
4. “述語”的特殊類型
5. 結論
【參考文獻】
【Abstract】

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-820-001021135