메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이규현 (울산과학기술원) 트란민콴 (울산과학기술원) 정원기 (울산과학기술원)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제22권 제3호
발행연도
2016.7
수록면
21 - 29 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 명시야 (bright-field) 현미경 영상를 위한 데이터 기반 세포 분할 알고리즘을 제시한다. 제시된 알고리즘은일반적인 사전 학습 기법과 다르게 동시에 두 개의 사전과 관련된 희소 코드 (sparse code)를 통해 정의된 에너지 함수의 최소화를 진행하게 된다. 두 개의 사전 중 하나는 명시야 영상에 대해학습된 사전이고 다른 하나는 사람에 의해 수작업으로 세포 분할된 영상에 대해학습된 것이다. 학습된두개의 사전을 세포 분할 될 새로운 입력 영상에 대해 적용하여 이와 관련된 희소코드를 획득한 후 픽셀단위의 분할을 진행하게 된다. 효과적인 에너지최소화를 위해합성곱희소코드(Convolutional Sparse Coding)와Alternating Direction of Multiplier Method(ADMM)이 사용되었고 GPU를 사용하여 빠른분산 연산이 가능하다. 본 연구는 이전에 사용된 가변형 모델 (deformable model)을이용한 세포 분할 방식과는다르게 제시된 알고리즘은 세포 분할을 위해 사전 지식이 필요없이 데이터 기반의 학습을 통해서 쉽고 효율적으로 세포 분할을 진행할 수 있다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 이중 사전 학습 기반 세포 분할 방법
4. 결과
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-000807173