메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Eulkyeong Lee (Chungnam National University) Seungjee Hong (Chungnam National University)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.43 No.1
발행연도
2016.3
수록면
136 - 143 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Garlic and onion are staple agricultural products to Koreans and also are important with regard to agricultural producers’ income. These products’ acreage responses are highly correlated with each other. Therefore, it is necessary to test whether there is a cointegration relationship between garlic acreage and onion acreage when one tries to estimate the acreage response’s function. Based upon the test result of cointegration, it is confirmed that there is no statistically significant cointegration relationship between garlic acreage and onion acreage. In this case, vector autoregressive model is preferred to vector error correction model. This study investigated the dynamic relationship between garlic and onion acreage responses using vector autoregressive (VAR) model. The estimated results of VAR acreage response models show that there is a statistically significant relationship between current and lagged acreage of more than one lag. Therefore, it is recommended that government should consider the long-run period’s relationship of each product’s acreage when it plans a policy for stabilizing the supply and demand of garlic and onion. For the price variables, garlic price only affects garlic acreage response while onion price affects not only onion acreage response but also garlic acreage response. This implies that the stabilizing policy for onion price could have bigger effects than that for garlic price stabilization.

목차

Abstract
Introduction
Materials and Methods
Results and Discussion
Conclusion
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-480-002738557