메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국주거학회 한국주거학회논문집 한국주거학회논문집 제26권 제4호
발행연도
2015.8
수록면
11 - 21 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to the mass production of housing in Korea, homogeneous current housing may fail to represent residents' preferences, especially for the elderly. The purpose of this study is to identify the preferred properties of consumers for accessible housing and to examine whether cluster analysis can identify groups of residents with similar accessible housing preferences. Using a conjoint method, prospective users can jointly consider all accessible attributes, with cost attributes suggested by this study. Four categories (accessibility, safety, convenience, cost), 7 attributes (clear width, level difference, installation of grab bars, installation of elevators: only for single house type, non slippery floor materials, safety alarms, service control devices, cost) and 2 levels for each attribute were chosen. A total of 374 questionnaires were collected through a questionnaire survey method. This study employed ratings-based Conjoint analysis and the respondents ranked each card, which consisted of a set of accessible housing attributes. The data were analyzed using SPSS 16.0. The findings of this study have identified 3-4 clusters for each housing sub market. Each cluster has a different combination of socio-demographic characteristics and residential characteristics, and showed the relative importance or preference values for each accessible attribute of the segmentation. For the single housing, one group of people strongly preferred installation of elevator. The results suggested that better customization of housing could be more appealing to the different clusters of residents, providing accessible housing with cost limitations.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-595-002605651