메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mao Lin (Air Force Engineering University) Ying-Hui Li (Air Force Engineering University) Liang Qu (Air Force Engineering University) Chen Wu (Air Force Engineering University) Guo-Qiang Yuan (Air Force Engineering University)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.16 No.1
발행연도
2016.1
수록면
182 - 189 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fault detection is the research focus and priority in this study to ensure the high reliability of a proposed three-level inverter. Kernel principal component analysis (KPCA) has been widely used for feature extraction because of its simplicity. However, highlighting useful information that may be hidden under retained KPCs remains a problem. A weighted KPCA is proposed to overcome this shortcoming. Variable contribution plots are constructed to evaluate the importance of each KPC on the basis of sensitivity analysis theory. Then, different weighting values of KPCs are set to highlight the useful information. The weighted statistics are evaluated comprehensively by using the improved feature eigenvectors. The effectiveness of the proposed method is validated. The diagnosis results of the inverter indicate that the proposed method is superior to conventional KPCA.

목차

Abstract
I. INTRODUCTION
II. PRELIMINARIES
III. SENSITIVITY ANALYSIS FOR KPCA FAULT DETECTION
IV. EXPERIMENTAL RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-560-002315337