메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오승철 (서경대학교) 서기성 (서경대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제64권 제12호
발행연도
2015.12
수록면
1,748 - 1,755 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A linear regression is widely used for prediction problem, but it is hard to manage an irregular nature of nonlinear system. Although nonlinear regression methods have been adopted, most of them are only fit to low and limited structure problem with small number of independent variables. However, real-world problem, such as weather prediction required complex nonlinear regression with large number of variables. GP(Genetic Programming) based evolutionary nonlinear regression method is an efficient approach to attach the challenging problem. This paper introduces the improvement of an GP based nonlinear regression method using ADF(Automatically Defined Function). It is believed ADFs allow the evolution of modular solutions and, consequently, improve the performance of the GP technique. The suggested ADF based GP nonlinear regression methods are compared with UM, MLR, and previous GP method for 3 days prediction of wind speed using MOS(Model Output Statistics) for partial South Korean regions. The UM and KLAPS data of 2007-2009, 2011-2013 years are used for experimentation.

목차

Abstract
1. 서론
2. 비선형회귀분석과 유전프로그래밍
3. GP 탐색 문제 개선 - 트리 구성 및 ADF
4. 풍속 예보 보정 기법 응용
5. 풍속 예보 보정 응용 실험 및 결과
6. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-560-002157279