메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제11권 제6호
발행연도
2006.12
수록면
79 - 86 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영상 식별 기술은 대용량의 멀티미디어 데이터베이스 환경 하에서 고속의 검색을 위해서 필수적이다. 본 논문은 이러한 고속 검색을 위하여 GA(Genetic Algorithm)과 SVM(Support Vector Machine)을 결합한 모델을 제안한다. 특징벡터로는 색상 정보와 질감 정보를 사용하였다. 이렇게 추출된 특징벡터의 집합을 제안한 모델을 통해 최적의 유효 특징벡터의 집합를 찾아 영상을 식별하여 정확도를 높였다. 성능평가는 색상, 질감, 색상과 질감의 연합 특징벡터를 각각 사용한 성능 비교, SVM과 제안된 알고리즘과의 성능을 비교하였다. 실험 결과 색상과 질감을 연합한 특징벡터를 사용한 것이 단일 특징벡터를 사용한 것 보다 좋은 결과를 보였으며 하이브리드 기법을 이용한 제안된 알고리즘이 SVM알고리즘만을 이용한 것 보다 좋은 결과를 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 데이터 마이닝
Ⅲ. 제안된 알고리즘
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0