메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이희성 (연세대학교) 홍성준 (연세대학교) 이병윤 (연세대학교) 김은태 (연세대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제3호
발행연도
2010.6
수록면
375 - 379 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Support vector machine (SVM)은 튼튼한 이론적 배경을 가지고 있고 구조적 위험을 성공적으로 최소화하기 때문에 추천가 시스템과 같은 다양한 패턴 인식 분야에서 사용되고 있다. 하지만 SVM이 초평면을 결정할 때 이상점들은 margin 손실들을 가지고 있기 때문에 이들은 초평면을 결정하는데 매우 중요한 역할을 하고 있다. 그 이유로 SVM은 이상점들에게 매우 민감한 문제점을 갖는다. 강인한 SVM을 위해 우리는 이상점들의 margin 손실의 최대치를 제한하지만 이것은 non-convex 최적화 문제를 포함한다. 따라서 본 논문에서는 non-convex 최적화 문제에 적합한 유전자 알고리즘을 이용하여 강인한 SVM을 설계하는 방법을 제안한다. 제안하는 알고리즘의 우수성을 보여주기 위하여 UCI repository에서 선택된 여러 데이터베이스들을 이용한 실험을 수행하였다.

목차

요약
Abstract
1. 서론
2. 배경지식
3. 유전자 알고리즘을 이용한 강인한 Support Vector Machine 설계
4. 실험
5. 결론
참고문헌
저자소개

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-028-002424874