메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제15권 제10호
발행연도
2010.10
수록면
105 - 112 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
의료 분야의 감성 및 심리 치료를 확장하여 이와 관련된 기술을 일반 생활에 접목하고, 또한 생체신호를 이용하여 보다 쾌적한 삶의 환경을 구축하려는 연구가 활발하게 진행되고 있다. 본 논문에서는 뇌전도(EEG : electroencephalogram)와 심전도(ECG : electrocardiogram)의 심박변이도(HRV : Heart Rate Variability)의 패턴을 분석하여 평온, 집중, 긴장, 우울의 네 가지 감성을 분류하고 추론하기 위한 감성추론시스템을 설계하고 구현하였다. 많은 감성 인식 연구가 얼굴이나 음성의 인식에 의하여 이루어지고 있으며, 생체신호를 이용한 추론 연구의 경우에도, 뇌전도나 심전도 등의 단일 생체신호의 분석에 의하여 이루어지고 있다. 본 논문에서는 단일 생체신호가 아닌 뇌전도와 심전도신호를 조합하여 복합적으로 분석함으로서 단일 생체신호의 분석 연구보다 추론의 정확도를 높였으며, 감성 추론을 위한 엔진으로지도 학습과 비지도학습의 RBFN(Radial Basis Function Network) 신경망을 적용하여 오류역전파 알고리즘의 지역 최소점과 수렴속도가 느린 단점을 보완하였다.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0