메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제15권 제4호
발행연도
2010.4
수록면
57 - 63 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Levenberg-Marquardt 알고리즘에서 감쇠 파라미터는 오류역전파 학습과 Gauss-Newton 학습의 스위치 역할을 하며 학습 속도에 영향을 준다. 이런 감쇠 파라미터를 고정시키는 것은 오차 함수의 진동을 유발하고 학습 속도를 감소시킨다. 따라서 본 논문은 오차 함수의 변화 과정을 참조하여 감쇠 파라미터를 가변적으로 적용하는 방법을 제안한다. 제안된 방법은 오차의 변화량이 크면 감쇠 파라미터를 크게, 오차의 변화량이 작으면 감쇠 파라미터를 작게 조정한다. 이것은 모멘텀과 유사한 역할을 하여 학습 속도를 향상시킨다. 제안된 방법의 검증을 위한 실험으로는 iris 분류 문제와 wine 분류 문제를 사용하였다. 제안된 방법은 iris 분류 문제에서는 67% 학습에서, wine 분류 문제에서는 78% 학습에서 학습 속도가 향상되었으며 기존 방법과 비교하여 오차의 진동도 적은 것을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0