메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안정호 (강남대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제16권 제4호
발행연도
2015.8
수록면
605 - 613 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 패턴인식에서 자주 사용되는 투영행렬을 희소화하는 문제를 다룬다. 최근 임베디드 시스템이 널리 사용됨에 따라 탑재되는 프로그램의 용량이 제한받는 경우가 빈번히 발생한다. 개발된 프로그램은 상수 데이터를 포함하는 경우가 많다. 예를 들어, 얼굴인식과 같은 패턴인식 프로그램의 경우 고차원 벡터를 저차원 벡터로 차원을 축소하는 투영행렬을 사용하는 경우가 많다. 인식성능 향상을 위해 영상으로부터 매우 높은 차원의 고차원 특징벡터를 추출하는 경우 투영행렬의 사이즈는 매우 크다.
최근 라소 회귀분석 방법을 이용한 RSR(rotated sparse regression) 방법론[1]이 제안되었다. 이 방법론은 여러 실험을 통해 희소행렬을 구하는 가장 우수한 알고리즘 중 하나로 평가받고 있다. 우리는 본 논문에서 RSR을 개선할 수 있는 세 가지 방법론을 제안한다. 즉, 학습데이터에서 이상치를 제거하여 일반화 성능을 높이는 방법, 학습데이터를 랜덤 샘플링하여 희소율을 높이는 방법, RSR의 목적함수에 엘라스틱 넷 회귀분석의 패널티 항을 사용한 E-RSR(elastic net-RSR) 방법을 제안한다. 우리는 실험을 통해 제안한 방법론이 인식률을 희생하지 않으며 희소율을 크게 증가시킴으로써 기존 RSR 방법론을 개선할 수 있음을 보였다.

목차

요약
Abstract
1. 서론
2. 희소성 제약이 있는 회귀모델
3. RSR 개선 방법론
4. 실험 및 결과
5. 결론 및 토의
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-566-001911835