메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이건일 (포항공과대학교) 이종혁 (포항공과대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제21권 제8호
발행연도
2015.8
수록면
567 - 571 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 전이 기반 한국어 의존 구문 분석 방법론들은 사용 될 자질의 설계에 많은 노력이 필요하다. 최근에 인공 신경망을 이용하여 자질 설계 단계에서의 시간과 노력을 줄이는 연구들이 많이 수행되었으나 제한된 context의 정보들만 보고 전이 과정에 필요한 decision을 내려야 하는 문제점들이 있다. 본 논문에서는 순환 신경망 모델을 이용하여 자질 설계에 필요한 노력을 줄이고 순환 구조로 먼 거리 의존관계를 고려하였다. 실험을 진행한 결과 일반적인 다층 신경망에 비해 0.51%의 성능향상을 이루었으며 UAS 90.33%의 성능을 선보인다.

목차

요약
Abstract
1. 서론
2. 전이 기반 의존 구문 분석
3. 다층 신경망을 이용한 전이 기반 의존 구문 분석
4. 순환 신경망을 이용한 전이 기반 의존 구문 분석
5. 실험 및 성능평가
6. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0