메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박준범 (과학기술연합대학원대학교) 진승헌 (한국전자통신연구원) 최대선 (한국전자통신연구원)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제25권 제3호
발행연도
2015.6
수록면
493 - 500 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정부 3.0 공공정보 공유 및 개방, 소셜네트워크서비스의 활성화 그리고 사용자 간의 공유 데이터 증가로 인터넷상에 노출되는 사용자의 개인 정보가 증가하고 있다. 이에 따라 프라이버시를 지키기 위한 익명화 알고리즘이 등장하였으며 관계형 데이터베이스에서의 익명화 알고리즘은 k-익명성(k-anonymity)을 시작으로 ℓ-다양성(ℓ-diversity), t-밀집성(t-closeness)으로 발전하였다. 익명화 알고리즘의 성능 향상 부분은 계속해서 효율적인 방법이 제안되고 있지만, 기업이나 공공기관에서는 알고리즘 성능의 향상보다는 전체적인 익명화 처리 방법이 필요한 실정이다. 본 논문에서는 관계형 데이터베이스에서 데이터의 그룹화를 이용하여 k-익명성, ℓ-다양성, t-밀집성 알고리즘을 처리하는 과정을 구체화하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안하는 익명화 처리 시스템 구조
Ⅲ. 데이터 그룹화 익명화 기법
Ⅳ. 익명화 처리 분석
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001652418