메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mohammad Esmail Esmaili (Sharif University of Technology) Reza Entezari-Maleki (Sharif University of Technology) Ali Movaghar (Sharif University of Technology)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.9 No.1
발행연도
2015.3
수록면
9 - 19 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The most important challenge in the region-based abstraction method as an approach to compute the state space of time Petri Nets (TPNs) for model checking is that the method results in a huge number of regions, causing a state explosion problem. Thus, region-based abstraction methods are not appropriate for use in developing practical tools. To address this limitation, this paper applies a modification to the basic region abstraction method to be used specially for computing the state space of TPN models, so that the number of regions becomes smaller than that of the situations in which the current methods are applied. The proposed approach is based on the special features of TPN that helps us to construct suitable and small region graphs that preserve the time properties of TPN. To achieve this, we use TPN-TCTL as a timed extension of CTL for specifying a subset of properties in TPN models. Then, for model checking TPN-TCTL properties on TPN models, CTL model checking is used on TPN models by translating TPN-TCTL to the equivalent CTL. Finally, we compare our proposed method with the current region-based abstraction methods proposed for TPN models in terms of the size of the resulting region graph.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. PRELIMINARIES
Ⅲ. PROPOSED ABSTRACTION METHOD
Ⅳ. TCTL FOR TPN MODELS
Ⅴ. EXPERIMENTAL RESULTS
Ⅵ.CONCLUSIONS AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001352991