메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Youngjoon Chai (Chung-Ang University) Taeyong Kim (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.2 No.1
발행연도
2015.2
수록면
74 - 80 (7page)
DOI
10.15323/techart.2015.02.2.1.74

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A tiled display can be defined as a system in which a single large display screen is connected to several clustered computers. Conventionally, two methods have been adopted to generate a large display screen. The first method utilizes image streaming, whereas the second uses distributed rendering of three-dimensional (3D) model data. Because of the 2D nature of the image-streaming method, it cannot be used to establish a 3D virtual environment and rotational transformation in-depth dimension. In comparison, the distributed rendering method functions within a singular virtual world. In this study, a hybrid distributed rendering system (HDRS) is proposed that consolidates the distributed rendering and image streaming methods, thereby overcoming the disadvantages of each. HDRS consists of master and slave servers on an OpenSG scene-graph platform to integrate the distributed-rendering and image-streaming methods. An independent media server is used to transmit synchronized texture data in parallel. For bandwidth efficiency, the media server deploys an adaptive scaled image based on the depth and position information of a plane. As a result, video frames displayed in a 3D environment can undergo geometric transformations such as rotation, scaling, and translation-enabling compatibility with interaction techniques.

목차

Abstract
1. Introduction
2. Image-streaming and distributed-rendering methods for a tiled display
3. Hybrid distributed-rendering system
4. Experiments
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-688-001122102