메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김은솔 (서울대학교) 노영균 (한국과학기술원) 장병탁 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.42 No.2
발행연도
2015.2
수록면
235 - 241 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
국부 선형 임베딩(Locally Linear Embedding, LLE) [1]는 다양체 학습(manifold learning) 알고리즘 중 하나로 고차원 공간에 있는 데이터들 사이의 내적 값을 기반으로 임베딩하는 방법이다. LLE를 이용하여 임베딩 한 결과는 독특한 성질이 있는데, 고차원 공간 상에서 같은 평면에 있는 데이터들은 내적 값이 크기 때문에 저차원 공간에서도 가깝게 위치하도록 임베딩 되는 반면 수직으로 위치한 평면에 있는 데이터들은 내적 값이 0이 되기 때문에 서로 떨어진 위치에 임베딩된다. 한편, 한 사람의 얼굴에 다양한 각도에서 조명을 비추면서 촬영한 이미지들은 저차원의 선형 부분공간을 구성한다는 사실이 잘 알려져 있다 [2]. 이에 본 논문에서는 다른 평면에 위치하는 데이터들을 자연스럽게 분류하여 임베딩하는 LLE 알고리즘을 얼굴 이미지에 사용하여 효과적으로 얼굴 인식 문제를 해결할 수 있는 방법을 제안한다. 제안하는 방법은 LLE에 연립 대각화(Simultaneous Diagonalization, SD)를 적용한 방법으로, S연립 대각화를 적용하면 데이터들이 형성하는 평면이 수직이 되도록 바꿀 수 있기 때문에 LLE의 성질을 극대화 할 수 있다. 실험 결과, 연립 대각화를 적용하고 LLE를 적용하면 서로 다른 사람의 얼굴 이미지들이 겹치지 않고 뚜렷하게 구분되는 효과가 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. Locally Linear Embedding
3. 연립 대각화(Simultaneous Diagonalization)
4. 실험 및 논의
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0